dbo:abstract
|
- A számelméletben ha p prímszám, és p2 osztója 2p − 1 − 1-nek, akkor p Wieferich-prím. A Wieferich-prímek a kis Fermat-tételhez kapcsolódnak, ami azt állítja, hogy ha p páratlan prím, akkor osztója 2p − 1 − 1-nek. Arthur Wieferich 1909-ben írta le őket az akkori Fermat-sejtéshez, ma nagy Fermat-tételhez kapcsolódó feljegyzéseiben. Akkoriban már Fermat mindkét állítása közismert volt. A Wieferich-prímek azóta más témákban is felbukkantak a számok és prímek különböző típusaival együtt, így a Mersenne- és a Fermat-számokkal, bizonyos típusú álprímekkel és a Wieferich-prímek eredeti definíciójának általánosításával kapott számokkal együtt. Idővel jobban megismerve ezeket a kapcsolatokat bizonyos prímszámok újabb tulajdonságait fedezték fel olyan általánosabb témákban, mint az abc-sejtés vagy a számtestek. A kutatások ellenére eddig csak két Wieferich-prímet ismerünk, ezek az 1093 és a (A001220 sorozat az OEIS-ben). (hu)
- A számelméletben ha p prímszám, és p2 osztója 2p − 1 − 1-nek, akkor p Wieferich-prím. A Wieferich-prímek a kis Fermat-tételhez kapcsolódnak, ami azt állítja, hogy ha p páratlan prím, akkor osztója 2p − 1 − 1-nek. Arthur Wieferich 1909-ben írta le őket az akkori Fermat-sejtéshez, ma nagy Fermat-tételhez kapcsolódó feljegyzéseiben. Akkoriban már Fermat mindkét állítása közismert volt. A Wieferich-prímek azóta más témákban is felbukkantak a számok és prímek különböző típusaival együtt, így a Mersenne- és a Fermat-számokkal, bizonyos típusú álprímekkel és a Wieferich-prímek eredeti definíciójának általánosításával kapott számokkal együtt. Idővel jobban megismerve ezeket a kapcsolatokat bizonyos prímszámok újabb tulajdonságait fedezték fel olyan általánosabb témákban, mint az abc-sejtés vagy a számtestek. A kutatások ellenére eddig csak két Wieferich-prímet ismerünk, ezek az 1093 és a (A001220 sorozat az OEIS-ben). (hu)
|