dbo:abstract
|
- A Wilson-tétel a következőt állítja: ha p prímszám, akkor . Összetett számra ez nem teljesülhet, mivel, ha n>1 összetett, akkor n-nek és (n-1)!-nak van közös osztója, sőt, minden 4-nél nagyobb n összetett számra . Így ez a tétel elméletben használható lenne prímtesztnek, de gyakorlatilag szorzás elvégzésével jár, így a tipikusan legalább pár száz jegyből álló számoknál nem praktikus. Az angol , tanítványa fedezte fel. Waring 1770-ben bejelentette a tételt, de bizonyítani nem tudta. Lagrange adta az első bizonyítást 1773-ban. Minden jel szerint már Leibniz ismerte a tételt, de nem publikálta. A tételt úgy is általánosíthatjuk tetszőleges modulusra, hogy a redukált maradékosztályok szorzatát vizsgáljuk: ilyenkor a szorzat -1 maradékot ad a modulusra nézve, ha az 4, egy páratlan prímhatvány, vagy egy páratlan prímhatvány kétszerese; minden más esetben a keresett maradék értéke 1. (hu)
- A Wilson-tétel a következőt állítja: ha p prímszám, akkor . Összetett számra ez nem teljesülhet, mivel, ha n>1 összetett, akkor n-nek és (n-1)!-nak van közös osztója, sőt, minden 4-nél nagyobb n összetett számra . Így ez a tétel elméletben használható lenne prímtesztnek, de gyakorlatilag szorzás elvégzésével jár, így a tipikusan legalább pár száz jegyből álló számoknál nem praktikus. Az angol , tanítványa fedezte fel. Waring 1770-ben bejelentette a tételt, de bizonyítani nem tudta. Lagrange adta az első bizonyítást 1773-ban. Minden jel szerint már Leibniz ismerte a tételt, de nem publikálta. A tételt úgy is általánosíthatjuk tetszőleges modulusra, hogy a redukált maradékosztályok szorzatát vizsgáljuk: ilyenkor a szorzat -1 maradékot ad a modulusra nézve, ha az 4, egy páratlan prímhatvány, vagy egy páratlan prímhatvány kétszerese; minden más esetben a keresett maradék értéke 1. (hu)
|