dbo:abstract
|
- Zénón paradoxonjainak azokat a paradoxonokat nevezzük, amelyeket az eleai Zénón ötlött ki Parmenidész elméletének alátámasztására, miszerint az érzékek által alkotott kép félrevezető, konkrétabban, hogy a mozgás csak illúzió, valójában nem létezik. Zénón nyolc fennmaradt (és Arisztotelész Fizika c. művében leírt) paradoxonja nagyjából mind ugyanarra az alapgondolatra épül, és legtöbbjét már az ókorban is könnyen cáfolhatónak tartották. A három leghíresebb és legjobban védhető alább olvasható. (1.: Akhilleusz és a teknős paradoxonja 2.: A fának hajított kő paradoxonja 3.: A nyílvessző paradoxonja) Ez a három paradoxon sok fejtörést okozott számos ókori és középkori filozófusnak. Newton és Leibniz az analízis területén (elsősorban a kezelésében) elért áttöréseinek köszönhetően váltak feloldhatóvá a 17. században. Azt, hogy a valós számok megalapozása és általában a hagyományos matematika számára nem jelentenek problémát, a 19. században sikerült végleg belátni; amikor az analízis eszközeinek megújításával a matematikusok számos nehéz problémát oldottak meg. (hu)
- Zénón paradoxonjainak azokat a paradoxonokat nevezzük, amelyeket az eleai Zénón ötlött ki Parmenidész elméletének alátámasztására, miszerint az érzékek által alkotott kép félrevezető, konkrétabban, hogy a mozgás csak illúzió, valójában nem létezik. Zénón nyolc fennmaradt (és Arisztotelész Fizika c. művében leírt) paradoxonja nagyjából mind ugyanarra az alapgondolatra épül, és legtöbbjét már az ókorban is könnyen cáfolhatónak tartották. A három leghíresebb és legjobban védhető alább olvasható. (1.: Akhilleusz és a teknős paradoxonja 2.: A fának hajított kő paradoxonja 3.: A nyílvessző paradoxonja) Ez a három paradoxon sok fejtörést okozott számos ókori és középkori filozófusnak. Newton és Leibniz az analízis területén (elsősorban a kezelésében) elért áttöréseinek köszönhetően váltak feloldhatóvá a 17. században. Azt, hogy a valós számok megalapozása és általában a hagyományos matematika számára nem jelentenek problémát, a 19. században sikerült végleg belátni; amikor az analízis eszközeinek megújításával a matematikusok számos nehéz problémát oldottak meg. (hu)
|