This HTML5 document contains 13 embedded RDF statements represented using HTML+Microdata notation.

The embedded RDF content will be recognized by any processor of HTML5 Microdata.

Namespace Prefixes

PrefixIRI
wikipedia-huhttp://hu.wikipedia.org/wiki/
dcthttp://purl.org/dc/terms/
dbohttp://dbpedia.org/ontology/
foafhttp://xmlns.com/foaf/0.1/
dbpedia-huhttp://hu.dbpedia.org/resource/
prop-huhttp://hu.dbpedia.org/property/
rdfshttp://www.w3.org/2000/01/rdf-schema#
freebasehttp://rdf.freebase.com/ns/
dbpedia-plhttp://pl.dbpedia.org/resource/
rdfhttp://www.w3.org/1999/02/22-rdf-syntax-ns#
n5http://hu.dbpedia.org/resource/Sablon:
owlhttp://www.w3.org/2002/07/owl#
provhttp://www.w3.org/ns/prov#
xsdhhttp://www.w3.org/2001/XMLSchema#
n13http://hu.dbpedia.org/resource/Kategória:

Statements

Subject Item
dbpedia-hu:Gyökkritérium
rdfs:label
Gyökkritérium
owl:sameAs
freebase:m.0542hj
dct:subject
n13:Sorozatok
dbo:wikiPageID
493192
dbo:wikiPageRevisionID
23253554
prop-hu:wikiPageUsesTemplate
n5:Portál n5:ISBN
dbo:wikiPageInterLanguageLink
dbpedia-pl:Kryteria_zbieżności_szeregów
dbo:abstract
A Cauchy-kritérium megadja a numerikus sor konvergenciájának pontos feltételét, azonban a gyakorlatban ritkán használható, mert nehéz ellenőrizni. Ezért szükség van egyszerűbben ellenőrizhető kritériumokra is. Gyökkritérium: Ha van olyan 0<q < 1 szám, amelyre teljesül minden elég nagy n esetén, akkor a sor abszolút konvergens, vagyis konvergens is, hiszen az abszolút konvergenciából következik a konvergencia. Bizonyítás: A feltétel szerint minden elég nagy n-re. Mivel a sor konvergens, ha 0<q < 1, így alkalmazható a majoráns kritérium és épp a bizonyítandó állítást kapjuk.
prov:wasDerivedFrom
wikipedia-hu:Gyökkritérium?oldid=23253554&ns=0
dbo:wikiPageLength
1229
foaf:isPrimaryTopicOf
wikipedia-hu:Gyökkritérium
Subject Item
wikipedia-hu:Gyökkritérium
foaf:primaryTopic
dbpedia-hu:Gyökkritérium