This HTML5 document contains 13 embedded RDF statements represented using HTML+Microdata notation.

The embedded RDF content will be recognized by any processor of HTML5 Microdata.

Namespace Prefixes

PrefixIRI
wikipedia-huhttp://hu.wikipedia.org/wiki/
dcthttp://purl.org/dc/terms/
dbohttp://dbpedia.org/ontology/
foafhttp://xmlns.com/foaf/0.1/
dbpedia-huhttp://hu.dbpedia.org/resource/
prop-huhttp://hu.dbpedia.org/property/
rdfshttp://www.w3.org/2000/01/rdf-schema#
freebasehttp://rdf.freebase.com/ns/
rdfhttp://www.w3.org/1999/02/22-rdf-syntax-ns#
n4http://hu.dbpedia.org/resource/Sablon:
owlhttp://www.w3.org/2002/07/owl#
provhttp://www.w3.org/ns/prov#
xsdhhttp://www.w3.org/2001/XMLSchema#
n7http://hu.dbpedia.org/resource/Kategória:

Statements

Subject Item
dbpedia-hu:Nyitott_mondat
rdfs:label
Nyitott mondat
owl:sameAs
freebase:m.01h7p0
dct:subject
n7:Matematikai_terminológia n7:Elemi_algebra
dbo:wikiPageID
13750
dbo:wikiPageRevisionID
22924501
prop-hu:wikiPageUsesTemplate
n4:Portál n4:Lektor
dbo:abstract
Az 1960-as évek új matematikájának szaknyelvében jelent meg, a nyitott mondat egy olyan mondat, melyben a változók helyére az alaphalmazból elemeket helyettesítve a kifejezés kiértékelése igaz vagy hamis eredményt ad. Az elemi matematikaoktatásban nem terjedt el, továbbra is az egyenlet, egyenlőtlenség független változókkal stb. a használatos kifejezésmód, habár a matematikai logikában és az analitikus filozófiában abszolúte köznapinak számít a „nyitott mondat” (valójában inkább „nyílt mondat”) és „zárt mondat” megnevezés (valójában bizonyos reformok részeként e tudományágak hatására próbálták elterjeszteni az elemi matematikaoktatásban; ld. a és az szócikkeket). A matematikai tételek predikatív szempontból való osztályzása, ennek részeként a nyílt-zárt megkülönböztetés felfedezése és logikai alapparadigmává tétele végső soron Gottlob Frege műve, bár ő nem a „zárt” és „nyílt”, hanem a „határozott” és „határozatlan” (illetve, „kiegészítésre szoruló”, „kitöltetlen” stb.) kifejezéseket használta. A nyitott mondat kifejezést főleg általános iskolai (alsó tagozatos) matematika tankönyvek használják érthetőbb, világosabb hangzása miatt. Ott nem egyszer valóban szöveges mondatokat jelöl ez a megnevezés. Az összes számértéket, melyre a nyitott mondat igaz értéket ad, megoldásnak nevezzük. Ha az alaphalmaz minden értéke megoldás, akkor azonosságról beszélünk. Példák nyitott mondatra: 1. * , egyetlen megoldása az egész számok halmazán a 10. 2. * , a valós számok halmazán minden 1,5-nél nagyobb valós szám megoldás. 3. * , a valós számpárok halmazán azok a párok adják a megoldást, melyek egymás additív inverzei. 4. * , azonosság, mert az alaphalmaz minden értéke megoldás. 5. * , nincs megoldása egyetlen számkörben sem. A 2. példa egyenlőtlenség, a többi pedig egyenlet. A nyitott mondathoz minden esetben (gyakran csak közvetett módon) tartozik egy alaphalmaz, ami kijelöli azt a számkört, amiben a megoldásokat keressük. Lehet alaphalmaz a valós számok halmaza, vagy akár kereshetjük a megoldásokat az egészek körében. A fenti 2. példában 1,5 megoldás, ha alaphalmaznak a valós számokat választjuk, de nem megoldás, ha ugyanezt az egészek körében keressük. Az utóbbi esetben csak az 1,5-nél nagyobb egész számok a megoldások, tehát: 2, 3, 4, és így tovább. Másrészről pedig az alaphalmaznak a komplex számokat választva ez a feladat értelmetlen (persze más esetben lehet értelmes). Természetesen az azonosság is csak az alaphalmaz értékeire szorítkozhat. Az alaphalmaz használható a nyitott mondat megoldásainak felírásánál, amihez logikai jeleket és kvantorokat is használhatunk. Például a fenti második példa megoldását a következő módon formalizálhatjuk: Minden x-re, akkor, és csak akkor ha . Itt a minden x-re fordulat közvetetten azt sugallja, hogy az alaphalmaz minden szóba jövő matematikai objektumot jelent, azaz a lehető legbővebb számhalmazt. A fentiek folyományaként előállnak olyan esetek is, amikor a változók egyáltalán nem számokat jelentenek, mint például a függvényegyenleteknél. Tekintsük a következő kifejezést: f*f = f, ami x minden értékére a következőt jelenti: . Amennyiben az alaphalmaznak az összes valós függvényt tekintjük, akkor f-re kapható megoldás olyan függvényeket jelent, amik értéke csak 0, vagy csak 1 lehet. Amennyiben az alaphalmaz a folytonos függvények halmaza, akkor két konstans függvény lehet megoldás, az azonosan 0 és az azonosan 1 függvény.
prov:wasDerivedFrom
wikipedia-hu:Nyitott_mondat?oldid=22924501&ns=0
dbo:wikiPageLength
4281
foaf:isPrimaryTopicOf
wikipedia-hu:Nyitott_mondat
Subject Item
wikipedia-hu:Nyitott_mondat
foaf:primaryTopic
dbpedia-hu:Nyitott_mondat